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ABSTRACT
The E-commerce market is dynamically growing and it has become
essential for the industry to build top-notch search and customer
service natural language understanding systems and platforms.
Named entity recognition (NER) is a critical component of such
natural language understanding systems. NER is required to iden-
tify the entity types that can help search systems retrieve relevant
products, create knowledge graphs that are essential for catalog
population and completion, etc. All these components are put to-
gether to offer an appealing and seamless shopping experience
for the customers. However, building effective NER solutions on
the user-generated text is a challenging task due to ambiguity or
variations of the entity mentions, dearth of labeled data for training
ML models and noisy or incoherent annotations in the available
labeled data. In this paper, we propose three end-to-end solutions
to address these challenges - character and sub-word based em-
bedding methods for an effective NER architecture, a self-training
based approach and noisy labels handling approach. We highlight
the effectiveness of our proposed solutions by doing empirical eval-
uations on the three use-cases to which we have catered, namely
Voice Search, Text Search and Buying Assistant. We achieved rela-
tive improvements of 15.50%, 3.42%, and 8.48% in the weighted 𝐹1
scores for these three datasets in comparison to baselines.

CCS CONCEPTS
• Named entity recognition; • Semi supervised learning; •
Noisy labels;
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1 INTRODUCTION
Named Entity Recognition (NER) aims at extracting relevant enti-
ties from unstructured text and assigning them to respective entity
types. It is one of the fundamental building blocks in a natural
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language understanding pipeline. In the e-commerce domain, it
contributes to a number of downstream applications such as: ex-
tracting the entities in search user queries for the retrieval of rele-
vant products[35], identification of entities in a Question Answer-
ing system[32], Intent Classification[41], creation of a Knowledge
Graph[1] from unstructured product descriptions, etc. NER on user-
generated text is a challenging task because of the variations with
which users can mention the entity names. A NER system can en-
counter out of vocabulary (OOV) words, which makes it difficult for
the models to predict the correct entity types. For example, users
often mention new brand names in their search queries with ei-
ther spell errors or words unavailable in the training data. In order
to handle OOV words in our NER models, we use character and
sub-word based embeddings.

Current neural network based NER models have demonstrated
state-of-the-art performance on the NER [44] task. However, their
efficacy is dependent on the availability of huge amounts of clean
labeled data. Annotation of such large accurate datasets is expen-
sive, time-consuming and requires domain expertise. On the other
hand, unlabeled queries are available in abundance. This facilitates
the need to incorporate Semi-Supervised Learning (SSL)[25] based
NER solutions in e-commerce, thereby mitigating the problem of
labeled data shortage. We tackle this problem using a special kind of
SSL approach called Self-Training[18]. This self-training approach
is built on the teacher-student framework, where a teacher model
is trained on the labeled dataset. The teacher model is used to prop-
agate pseudo-labels to the unlabeled data. After this step, student
model is trained with both labeled and pseudo-labeled data and the
process is repeated till a predefined number of steps. However, a
major drawback of self-training approaches is that they are quite
sensitive to label noise or label inconsistencies.

Live user queries from the production pipeline are collected and
annotated periodically. The deployed NER system needs to adapt
to the language variations over time and thus the annotation guide-
lines keep evolving. Moreover, queries are annotated in batches by
different groups of annotators. This introduces a lot of noisy and
inconsistent labels [10]. Training deep neural networks with such
noisy labels leads to degraded performance because the standard
cross-entropy loss overfits on these noisy labels. A modified ver-
sion of the cross-entropy loss was proposed in [33] for the image
classification task. In this work, we adapt that modification of cross-
entropy loss in sequence labeling tasks to handle such overfitting
to label noise.

We evaluate our approaches on three use-cases: (i) Voice Search
(ii) Text Search and (iii) Buying Assistant (BA). Voice search is used
by our customers to search for products using speech as the input
modality. Text search is the primary tool used by our customers
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to search products using unstructured text as the input. Buying
Assistant is a new feature that helps our customers with answers
to their questions before finalizing the purchase decision. We de-
scribe our experiments and evaluate our basic models, self-training
approaches and label-noise mitigation technique on test sets com-
prised of user queries from all three use-cases. We have achieved
weighted 𝐹1 scores of 83.15%, 87.96% and 85.91% on Voice Search,
Text Search and BA respectively.

Our major contributions in this paper are:

• We build NER solutions with OOV handling methods such
as character level CNN, fasttext and BPE on three use-cases
- Text search, Voice search and Buying Assistant.

• We further propose a teacher-student self-training frame-
work to mitigate dependency on labeled data by utilizing
pseudo-labels on unlabeled data.

• Finally, we adapt a modification of CE loss to handle label
noise in the training data.

• We obtained relative improvements of 15.50%, 3.42% and
8.48% in the weighted 𝐹1 scores for Voice Search, Text Search
and BA datasets respectively.

2 RELATEDWORK
In this section, we will briefly explain the previous work done
for Named Entity Recognition (NER) problem in supervised and
semi-supervised settings. Early solutions proposed for NER are
knowledge based approaches which rely on lexical clues available
in the queries. While these approaches are easier to interpret, their
coverage is low and cannot generalize to new domains. As a result,
these approaches have high precision and low recall. Feature engi-
neering based solutions rely on hand crafted features encoded as
feature vectors. [43] were the first ones to come up with a robust
feature engineering based approach utilizing orthographic features
like capitalization, alphabets, etc., along with trigger words, person
names and built a sequence tagger using Hidden Markov Model
(HMM). It is a tedious task to come up with features for the NER
problem settings where the number of domains is huge and features
from one domain may not be not reusable for another domain.

To overcome the drawbacks of feature based approaches deep
learning based end-to-end solutions were proposed. These solu-
tions replace hand crafted features with learnable feature vectors
called embeddings and use them to train NER models. These embed-
dings can be of two types: word based [17] or character based [19].
Further, there could be hybrid approaches similar to [21] which
utilizes both character and word-level features with BiLSTM-CRF as
their backbone architecture to effectively recognize entities. These
approaches help us in building robust NER models however, they
require large human annotated data which is time consuming and
expensive to obtain.

To mitigate the dependency on labeled data and to effectively
utilize unlabeled data, Semi-Supervised Learning (SSL) approaches
come to our rescue. Among all the SSL approaches, a specific SSL ap-
proach called Self-Training [18] has been recently demonstrated to
give substantial gains in tasks like Text Classification [24], Machine
Translation [15], slot filling [34]. Self-training is used to propagate
pseudo-labels to unlabeled data which helps us to train a robust

model combining human labeled and pseudo-labeled data. How-
ever, for this approach to be successful we have to do an intelligent
selection of pseudo labeled samples. To this end, we have explored
various sample uncertainty measures and adopted the most intu-
itive one i.e., Bayesian Active Learning by Disagreement (BALD)
proposed by [16] for the NER task.

Numerous approaches have been explored in the past for han-
dling noisy labels in the training of Deep Neural Networks (DNN)
[30]. Some studies [2, 4, 12] proposed architectural changes such
as a noise adaptation layer on top of the softmax layer to learn
the noise transition matrix, whereas others [14, 37, 38] came up
with dedicated architectures to handle more complex and realistic
noise. Regularization based approaches such as loss-based gradient
clipping [23] and robust early learning [36] prevent the models from
overfitting to the label noise. The regularization can be implicitly
obtained through adversarial training [13], label smoothing [22]
or linear interpolation of noisy examples in the embedding space
[40]. Our adaptation of SCE loss in NER is more closely related to
the family of noise handling methods through designing robust
loss functions. Mean Absolute Error (MAE) has proven to be noise-
tolerant [11], but it is difficult to train DNNs with MAE. Generalized
Cross-Entropy (GCE) [42] was proposed to combat this problem
by combining the advantages of CE and MAE in a single formu-
lation. Symmetric Cross Entropy (SCE) [33] was developed from
the perspective of information theory, wherein if the true label
distribution is noisy then we need to consider the reverse direction
of KL-Divergence for penalizing noisy labels. Therefore the authors
added a reverse cross entropy term to CE to make it robust. SCE
was introduced for vision tasks and in this paper, we adapt the
formulation in our NER task.

3 PROBLEM DEFINITION
The training corpus can be defined as D𝐿 = {(𝑋 𝑖 , 𝑌 𝑖 )}𝑁

𝑖=1, where
each𝑋 𝑖 = 𝑥1, 𝑥2, ..., 𝑥𝑛 represents a sentence with𝑛 tokens and each
𝑌 𝑖 = 𝑦1, 𝑦2, ..., 𝑦𝑛 represents the entity types in the label sequence.
Traditionally, NER is defined as a supervised sequence labelling
problem wherein the task is to classify each input token 𝑥 𝑗 into
one of 𝐾 entity types. For example, for an input sentence: “show
me navy blue nike shoes”, the model needs to produce the following
entity types corresponding to each token: “O O B-color I-color B-
brand B-category”. Here the model predicts the entity boundaries
corresponding to each entity type using the BIO format, wherein
the start token of an entity mention is specified by “B-type”, the
intermediate tokens by “I-type” and “O” specifies non-entity tokens.
In this work, we use the BIO format only for the Buying Assistant
and use the above mentioned formulation without the boundary
tags in Voice and Text Search use-cases.

In our semi-supervised problem setup, we have a set of𝑀 (𝑀 >>

𝑁 ) unlabeled sentences D𝑈 = {𝑋 𝑖 }𝑀
𝑖=1 in addition to D𝐿 where𝑀

stands for number of unlabeled samples and 𝑁 stands for number
labeled samples. Our objective is to utilize these unlabeled sam-
ples in order to tackle the problem of labeled data scarcity. Due to
evolving annotation guidelines and differences in batches of annota-
tors, we may encounter noisy labels in D𝐿 . We may also encounter
noisy pseudo-labels, which are being generated by a teacher model
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trained on D𝐿 . This poses an additional challenge while designing
an NER model which is resilient to such label noises.

4 PROPOSED APPROACHES
In this section, we describe our baseNERmodel, our semi-supervised
solution to the label scarcity problem and a modification to the loss
function that makes the model robust to label noise.

4.1 Basic Architecture
We now explain our base model and describe the character and
sub-word features used to handle the OOV problem.

4.1.1 Base Model: Let the word embeddings corresponding to the
input tokens 𝑥1, 𝑥2, ..., 𝑥𝑛 be denoted by x1, x2, ..., xn. We experi-
ment with randomly initialized word embeddings as well as GloVe
[26] embeddings. We model the sequence labelling task with a bidi-
rectional LSTM (BiLSTM)[28] and a decoding layer on top of it.
Specifically, the sequential dependencies are captured in the hidden
states h1, h2, ..., h𝑛 of the BiLSTM:

h𝑓
𝑖
= 𝐵𝑖𝐿𝑆𝑇𝑀𝑓 (x𝑖 , h

𝑓

𝑖−1)

h𝑏𝑖 = 𝐵𝑖𝐿𝑆𝑇𝑀𝑏 (x𝑖 , h𝑏𝑖−1)

h𝑖 = h𝑓𝑛 ⊕ h𝑏1

(1)

where the ⊕ symbol denotes concatenation. We use a decoding
layer on top of the BiLSTM to obtain the entity type predictions.
Specifically, we use a feedforward layer followed by an output
softmax layer as the decoder.

4.1.2 Character and Subword Features: To handle OOV words, we
experimented with a character-level CNN. Specifically, we used
windows of sizes 𝐷 ×𝑊 with𝑊 = 1, 2, 3 and 4, on character embed-
dings (of𝐷 dimensions) along the length of the word. The extracted
features for each window size are concatenated to obtain the final
character CNN embeddings (d𝑖 ) for each token. Finally, the charac-
ter CNN embeddings are concatenated with the word embeddings
(x𝑖 ⊕ d𝑖 ) to form the input to the BiLSTM. For OOV words, such
character based embeddings provide some distinguishing features
in comparison to just using the word embedding for _UNK_ token.

We also experimented with Fasttext [3] features as the charac-
ter level representations. Fasttext incorporates the morphology of
words into the word representations and therefore can help in cases
where the OOV word is a morphological variant of a word that
is present in the vocabulary. To obtain Fasttext vectors specific to
our domain, we pretrained them using our own corpora instead
of using the already available ones. We also experimented with
Byte-pair Encoding (BPE) [29] as the sub-word features for the
OOV problem. BPE is a data compression technique [8] adapted
to the task of subword segmentation, where it merges the most
frequent character sequences into a single subword iteratively.

4.2 Self-Training
To minimize annotation bottleneck we have propose an approach
that utilizes a small amount of labeled data and a huge amount of
unlabeled data called Self-Training. In this self-training framework,
we have a 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 model which is trained on the small amount of
labeled data and is used to propagate labels to the unlabeled data

available to us. Since these labels are not obtained with manual
annotation they are called pseudo-labels. Labeled data and pseudo
labeled data combined are used to train the student model. Teacher-
student training is repeated alternately for 𝑁 steps or till conver-
gence. In general scenarios, the student model will have the same
architecture and configuration as the teacher model.

For self-training approaches to be successful we must have an
intelligent sample selection of pseudo labeled samples for training
the student model. Few intuitive sampling strategies to consider
are include only those samples where the teacher model is highly
confident (likely easy samples) or those where the teacher model
is least confident (likely hard samples). These strategies have their
own drawbacks, sampling only from the easy set for student train-
ing leads to minor gains utilizing the self-training approach. This
is because the model has already learned these patterns from the
labeled data. On the contrary, sampling only from the hard set leads
to noisy pseudo-labeled samples being selected and gradual drifts
from the initial labeled set of ground truth examples. Thus, We
need a sampling strategy that judiciously selects samples where the
model is uncertain and at the same it does not select samples far
away from the initial labeled set to avoid drifts. For this judicious
sampling, we adopted Bayesian Active Learning by Disagreement
(BALD) measure proposed by [16] given by the formula

𝐵𝐴𝐿𝐷 = 𝐻 [𝑝 (𝑌 |𝑋,D)] − 𝐸𝑝 (\ |D)𝐻 [𝑝 (𝑌 |𝑋, \ )] (2)

where𝑋 are inputs,𝑌 are outputs,D is the dataset,𝐻 is the entropy
function and \ are model parameters. The first term in the above
equation looks for an input 𝑋 for which the model is highly uncer-
tain about output 𝑌 . In other words, the output has high marginal
entropy. The second term looks for a data point with low expected
conditional uncertainty. The equation can be interpreted as seeking
the 𝑋 for which the model parameters under the posterior make
confident predictions, but these predictions are highly diverse. That
is, the parameters disagree about the output 𝑌 , hence we name this
formulation Bayesian Active Learning by Disagreement ie., higher
the model uncertainty of a sample higher is its BALD value.

[9] hypothesized that approximate BALD scores can be computed
using Monte Carlo (MC) Dropout. Calculation of individual token
BALD scores using MC dropout requires multiple stochastic passes,
and in each of them, we have to perform inference of the model. The
BALD score for the entire sample or query can be obtained by taking
an average of individual token BALD scores. While we intuitively
explain BALD approximation we point interested readers to [9] for
the mathematical derivations of how BALD scores can be computed
using MC dropout and do not include them here for brevity. For
our commonly used sequences taggers like BiLSTM-CRF taggers,
MC dropout can be applied in the following ways: (1) MC word
dropout i.e., randomly drop the entire after the word embedding
layer, (2) MC locked dropout i.e., drop the same neurons in the
embedding space of a recurrent layer for a whole sequence and
(3) MC all i.e., both MC word and MC locked incorporated in the
model. We finally select samples whose BALD scores are <= 0.5 for
student training.

4.3 Label Noise mitigation
Neural networks for classification are typically trained with Cross-
entropy (CE) loss. However, CE drives the training of networks
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Table 1: Dataset Statistics

Voice Search Text Search BA bot

Train 13,16,419 6,58,030 60,359
Test 4,239 39,045 6,721
unlabeled 51,06,065 14,00,124 1,37,974
Pseudo labeled (Best teacher) 31,50,000 8,90,000 84,956
Vocab Size 57,928 46,134 24,065
Unique words in Test 2,837 7,715 5,487
OOV words in Test 90 1,414 1,830

Table 2: Basic architecture parameters

Hyperparameter Voice Search Text Search BA bot

Best Embedding method Fasttext GloVe Fasttext
Word Embedding dim. 512 512 300
Char Embedding dim. 300 300 300
BiLSTM layers 3 2 2
BiLSTM nodes 640 128 128
Feedforward Hidden nodes 800 800 800

in a class-biased manner [33, 39]. The models tend to converge
on some of the classes faster (easy classes) while it takes longer
to converge on the other (hard classes). In the presence of label
noise, this problem becomes even more pronounced wherein the
model overfits the label noise of easy classes and learns in the hard
classes. To mitigate this problem, the authors in [33] proposed to
add another term to CE loss, inspired by the symmetric version of
KL-divergence (KLD).

Let the predicted distribution of the model be denoted by 𝑝 (𝑥)
and the true distribution by𝑞(𝑥). Typically,𝑞(𝑥) is one-hot encoded
and therefore minimizing CE will be equivalent to minimizing
𝐾𝐿𝐷 (𝑞 | |𝑝). It represents the penalty of encoding samples from
𝑞(𝑥) when using a code optimized for 𝑝 (𝑥). If 𝑞(𝑥) is noisy then we
also need to consider the reverse 𝐾𝐿𝐷 (𝑝 | |𝑞) to penalize encoding
samples from 𝑝 (𝑥) using a code for 𝑞(𝑥). Thus, the authors add a
reverse cross entropy (RCE) term to CE to formulate symmetric
cross-entropy (SCE):

𝑆𝐶𝐸 = 𝛼𝐶𝐸 + 𝛽𝑅𝐶𝐸 = 𝛼𝐻 (𝑞, 𝑝) + 𝛽𝐻 (𝑝, 𝑞)

𝑅𝐶𝐸 = −
𝐾∑︁
𝑘=1

𝑝 (𝑥𝑘 ) log𝑞(𝑥𝑘 )
(3)

Here, 𝛼 and 𝛽 are mixing hyper-parameters to control the trade-
off between the noise tolerance of RCE and convergence of CE. Since
𝑞(𝑥𝑘 ) is inside the logarithm, it can cause numerical instabilities
with 𝑞(𝑥) being one-hot. Therefore, we define log 0 = 𝐴 (where
𝐴 < 0 is some constant).

5 EXPERIMENTAL SETUP
Weperform exhaustive experimentation for our proposed approaches
with different architectures, embeddings and loss functions. We use
weighted Precision, Recall and 𝐹1 scores as the evaluation metrics.
Since the number of entities in our datasets is highly imbalanced
we also report macro 𝐹1 scores in table 5.

5.1 Datasets
We have evaluated our proposed approaches on three datasets ob-
tained from our internal Voice Search, Text Search and BA user
queries. We present a summary and statistics of labeled and unla-
beled data sets available with us in the table 1. Voice search queries
are a combination of Hindi, English and Hinglish (i.e., both Hindi
and English) languages. We have 93 entity tags in Voice search like
𝑖𝑑𝑒𝑎𝑙𝐹𝑜𝑟 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑏𝑟𝑎𝑛𝑑 , etc. User queries from the voice search
product were collected and annotated. Our second dataset is from
the text search domain. These queries are predominantly in English
with a few of them in Hindi and Hinglish. Unlike Voice search,
this dataset is limited only to the Lifestyle domain. We have 127
entity-tags for the text search dataset. Few examples of them are
𝐶𝑜𝑙𝑜𝑟 ,𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝐹𝑎𝑏𝑟𝑖𝑐 etc. Live text search queries were sampled
in a stratified manner based on impressions and were annotated to
create this dataset. Our last dataset is obtained from the customer
interactions with Buying Assistant (BA). These queries are predom-
inantly in English with few in Hindi and Hinglish. BA use-case is
has 23 entity classes and Unlike other use-cases, BA NER caters
to both generic entity tags like 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 , 𝐵𝑎𝑛𝑘𝑁𝑎𝑚𝑒 etc., and
Lifestyle specific entities like 𝐹𝑜𝑜𝑡𝑤𝑒𝑎𝑟𝐿𝑒𝑛𝑔𝑡ℎ, 𝐻𝑒𝑖𝑔ℎ𝑡 ,𝑊𝑒𝑖𝑔ℎ𝑡 etc.

5.2 Basic Architecture
Our basic architecture is adopted from the neural model for Named
Entity Recognition proposed by [21]. We chose the number of
BiLSTM nodes, BiLSTM layers and feedforward layer nodes by
hyper-parameter tuning on a validation set. We summarize these
choices in table 2. We use a dropout [31] of 0.3 for regularization
and Adam [20] optimizer with an initial learning rate of 0.001 for
training our models. To mitigate the domain gap, instead of using
the publicly available word embeddings for GloVe and Fasttext, we
pre-trained these embeddings on our datasets. We also compared
our results with the Spacy NER model as a baseline.1

5.3 Self-Training
For the self-training experiments, we use best teacher models from
table 3 and utilize unlabeled data available with us. As can be
observed from the table 3, best teacher NER models for Voice
search, text search and BA are BiLSTM+CharCNN+Fasttetxt, BiL-
STM+CharCNN+Glove and BiLSTM+CharCNN+Fasttext respec-
tively. These best teacher models and their SCE variants are used
to infer pseudo labels for the unlabeled data available to us (Refer
to the table 1 for the number of unlabeled samples). For each of the
samples, during the inference phase, a BALD score for the entire
sample is computed using equation (2). If the BALD score is <=
0.5 then the pseudo labeled sample will be used for student model
training otherwise discarded.

5.4 Label Noise mitigation
The Reverse Cross Entropy (RCE) term is mixed with Cross Entropy
(CE) term in the loss with mixing hyper-parameters 𝛼 and 𝛽 . For
the Best Teacher + SCE model in (i) Voice Search we used 𝛼 = 2
and 𝛽 = 1, (ii) Text Search we used 𝛼 = 5 and 𝛽 = 7 and in (iii) BA
we used 𝛼 = 25 and 𝛽 = 1. These values for 𝛼 and 𝛽 were chosen by

1https://spacy.io/usage/training

https://spacy.io/usage/training
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Table 3: Weighted Precision, Recall and 𝐹1 scores of baselines with character and subword embeddings

Models Voice Search Text Search BA bot

Precision Recall F1 Precision Recall F1 Precision Recall F1

Spacy 73.11 70.91 71.99 85.73 84.39 85.05 86.83 82.02 84.36
BiLSTM 83.75 80.65 82.17 87.60 86.33 86.96 80.92 77.53 79.19
BiLSTM+charCNN 83.73 80.94 82.31 87.96 86.77 87.36 82.01 87.26 84.55
BiLSTM+charCNN+GloVe 84.23 81.38 82.78 88.13 86.80 87.47 82.72 87.91 85.24
BiLSTM+charCNN+BPE 83.94 81.39 82.65 88.01 86.92 87.46 79.58 84.82 82.12
BiLSTM+charCNN+Fasttext 84.39 81.92 83.14 87.90 86.96 87.43 83.57 87.82 85.64

Table 4: Weighted Precision, Recall and 𝐹1 scores of Self-training and Noise-handling (SCE) methods

Models Voice Search Text Search BA bot

Precision Recall F1 Precision Recall F1 Precision Recall F1

Best Teacher 84.39 81.92 83.14 88.13 86.80 87.46 83.57 87.82 85.64
Best Teacher + SCE 84.32 81.70 82.99 88.05 87.14 87.59 83.93 87.98 85.91
Self-Training Student model 84.83 81.53 83.15 88.27 86.88 87.57 81.87 87.45 84.57
Self-Training Student model + SCE 84.06 80.74 82.37 88.67 87.27 87.96 82.62 86.77 84.64

Table 5: Macro Precision, Recall and 𝐹1 scores of Self-training and Noise-handling (SCE) methods

Models Voice Search Text Search BA bot

Precision Recall F1 Precision Recall F1 Precision Recall F1

Best Teacher 64.32 59.12 61.61 56.90 54.95 55.91 56.37 58.98 57.65
Best Teacher + SCE 65.96 59.96 62.82 53.76 52.04 52.89 54.82 56.67 55.73
Self-Training Student model 68.57 63.64 66.01 55.61 56.63 56.12 56.40 52.37 54.31
Self-Training Student model + SCE 64.07 58.12 60.95 53.59 52.38 52.98 55.56 54.46 55.00

hyper-parameter tuning. The same values of 𝛼 and 𝛽 were retained
for the respective datasets while fine-tuning SCE student models.

6 RESULTS AND INSIGHTS
In this section, we explain the results obtained from our extensive
experiments and some insights into the model behaviors.

6.1 Results
The weighted Precision, Recall and 𝐹1 scores of our basic archi-
tecture with various embedding methods are summarized in table
3. All our models outperform the Spacy baseline. For all the three
datasets, character, n-gram and subword based embeddings help in
improving the model’s performance in comparison with the basic
BiLSTM model. In the absence of pseudo-supervision, the best 𝐹1
scores are obtained using Fasttext in Voice Search (83.14%) and
BA (85.64%) and using GloVe in Text Search (87.47%). The BA test
set has the highest percentage of OOV words (33.35% in table 1)
and therefore the benefits from using character and n-gram based
embeddings are the highest in this dataset compared to others.
These results show the benefits of using character and pre-trained
embeddings for tackling the OOV problem in NER.

The weighted precision, recall and 𝐹1 scores of self-training
along with SCE loss have been summarized in table 4. Due to the
usual class imbalance in the datasets, we also report the macro

𝐹1 scores in table 5. In Voice Search, the best weighted 𝐹1 score
(83.15) is obtained by self-training with the student model using
CE loss. Even though we have minor improvement in table 4, the
macro scores in table 5 show a large improvement while using self-
training. This shows that self-training with unlabeled data helps
in improving the scores of minority labels, for which the labeled
data are scarce. The addition of SCE loss in Voice Search did not
help. In Text Search, self-training and SCE loss contributed to the
improvements in weighted scores and the best 𝐹1 score (87.96%) is
obtained by a combination of both. For macro results, the best 𝐹1
score (56.12%) was obtained by self-training without SCE. In the BA
dataset, self-training did not provide benefits and the best model
was obtained by using SCE loss with best teacher from table 3. This
is because the size of unlabelled data was small and the confidence
of teacher model was low on the pseudo labeled samples.

6.2 Interpretable attributes
The changes in model behavior under different conditions are not
reflected by a single 𝐹1 score, and therefore identifying the strengths
and weaknesses of these models remains an open problem. To
combat this problem, [7] introduced a method of interpretable
evaluation by splitting test sets into different buckets according
to a few characteristic attributes of queries. Similarly, we have
computed the following attributes of queries in test sets:
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Figure 1: Best Model F1 scores of Text Search on interpretable test buckets

• Maximum entity span: The maximum number of tokens
in a single entity mentioned.

• Entity density: Number of entity tokens in a query, divided
by the total number of tokens in that query.

• Entity consistency: The number of occurrences of an entity
mentioned in the train set with a specific label sequence,
divided by the total number of occurrences of that entity.

• Token consistency: Number of occurrences of a token in
the train set with a specific label, divided by the total number
of occurrences of that token.

• Query Length: The number of tokens in a query.

After computing these attribute values, we group the test queries
into equally spaced buckets according to the attribute values. Note
that the consistency values are undefined for OOV words and there-
fore we exclude queries with OOV words for computing the entity
and token consistencies. We compute the weighted 𝐹1 scores for
each of these buckets and the standard deviation of these scores
across all buckets. The results are summarized in figure 1. This
evaluation is performed only for the Text Search test set because it
is the only dataset with a large enough size to be split into buckets
with decent sizes. The results show that entity span length is not a
problem for our NER models, as the 𝐹1 scores do not vary much.

We see that the 𝐹1 scores first increase and then decrease as the
entity density increases. This shows that our NER models perform
poorly in queries with high entity density. But the standard devia-
tion values show that our models struggle the most in queries with
low label consistency. Therefore tokens and entities which different
label distributions in train and test are a major problem for our
models. The 𝐹1 scores reach as high as 97 for buckets containing
queries with high label consistencies. This shows that ensuring
high label consistencies through better tagging instructions and
the removal of incorrect labels should provide huge benefits. The
results also show that queries with short lengths are a problem for
our NER models as they lack enough context information for the
models to predict correctly.

6.3 Impact of spell correction
Voice search and Text search datasets already have spell corrected
queries, unlike BA queries. Therefore, we tried out the our in-house

spell correction model on the BA test queries. We analyzed around
3k BA queries with and without spell error correction. We found
that 𝐹1 scores of our best model improved from 80.22% to 82.42%
on the entity tokens. We further performed a qualitative analysis
and found that spell correction helps a lot for the entity tokens
belonging to the entity classes 𝑏𝑟𝑎𝑛𝑑 , 𝑠𝑖𝑧𝑒 and 𝑎𝑔𝑒 .

6.4 BERT based variants
Recent advances in LM pretraining based methods [5, 6, 27] show
state-of-the-art results in public NER tasks. Along with the variants
of BiLSTM baselines we worked on utilizing LM pretraining based
methods. We tried finetuning of our in-house mBERT, BERT and
XLM on Voice Search test set which showed 𝐹1 scores of 81.32%,
82.32% and 81.83% respectively. Therefore, we did not obtain any
benefit using such large models in Voice Search and a primary
reasonwas short query lengths in user data (avg length∼ 4). Further,
we did not try these large models on Text Search and BA because
of the strict latency constraints of ∼ 30𝑚𝑠 in these products.

7 CONCLUSION AND FUTUREWORK
In this paper, we tackled the challenges of OOVwords, label scarcity,
and noisy labels, that are commonly observed in the real world
NER use-cases. To alleviate, the problem of OOV words we relied
on character, n-gram and subword based embeddings. We got max-
imum gains on the BA test set which had huge number of OOV
words. For the problem of label scarcity, we use a self-training based
approach which assesses quality of pseudo labels using an uncer-
tainty measure (i.e., BALD). The student models trained using these
pseudo-labels resulted in improved performance for Voice search
and Text Search. Finally, to handle the incorrect signals from noisy
labels, we adapt a robust loss function and observe benefits in the
Text Search dataset. Overall, we achieved relative improvements
of 15.50%, 3.42% and 8.48% in the weighted 𝐹1 scores for Voice
Search, Text Search and BA bot datasets respectively. In the future,
this work can be improved with sophisticated pseudo label quality
assessment functions and formulating robust loss functions with
noise tolerance and faster convergence. Finally, we can work on
improving the latencies of BERT based models through distillation
or quantization, for reaping the benefits of these large models.
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