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ABSTRACT
E-commerce platforms have millions of Stock Keeping Units (SKUs)

which makes it extremely difficult to manage the inventory and

design appropriate selection/pricing strategies. This necessitates

aggregating SKUs into larger units known as Merchant Stock Keep-

ing Units (MSKU). Further, designing critical business strategies on

these MSKUs requires them to be robust, interpretable, customer-

centric and scalable. Most of the existing algorithms in this domain

fail to satisfy one or more than one of the above mentioned criteria.

In this work, we propose a novel multimodal tree-based product-

clustering approach, wherein, we cluster SKUs on the product at-

tribute space supervised by their co-browse information that is

readily available. The proposed methodology splits the products by

their attribute values and utilizes their co-browse information for

identifying the best split. We recursively split our products until

we are left with a very few products or similar products constitut-

ing different MSKUs. Leveraging tree-based method enables us to

incorporate business guardrails and scale up the approach across

different verticals and business units. Experimental analyses on

real and synthetic datasets show highly interpretable and robust

MSKUs having superior cluster quality with respect to other mul-

timodal clustering techniques on this task. More importantly, the

proposed methodology enables us to address the cold start problem

in E-commerce by assigning new products to MSKUs that have no

browsing information available.

1 INTRODUCTION
A Stock Keeping Unit (SKU) is the most granular unit to track the

movement of inventory. In e-commerce, the number SKUs could

be very large, which makes it difficult to device efficient inven-

tory management policies. It is thus recommended to segregate

large inventory of SKUs for efficient demand planning, selection

optimisation, competitive pricing and personalization ([9–11]).

One of the most widely accepted criteria for SKU clustering using

ABC methods is the annual dollar usage of SKUs ( [4, 9, 14, 15]).

However, SKU sales data is sparse as many SKUs do not have any

sales data. This makes it difficult to group them with respect to SKU

importance using traditional techniques like ABC classification.
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[2] proposed integrating fuzzy concepts with inventory data to

device an analytical hierarchical process for SKU clustering. These

strategies, however, are not effective for large verticals of SKUs due

to sparsity of sales data. Recently, brand clustering and SKU level

clustering conditioned on brands have been investigated by [18]

on a latent attribute space. This strategy involves huge number of

model parameters which makes it difficult to scale across verticals.

In a fast paced e-commerce environment, new SKUs are fre-

quently added to the inventory to cater to customer needs. These

SKUs do not have any browsing or sales information and the only

way to assign them to an MSKU is through their attributes. Hence,

SKU attributes are critical to creating MSKUs and should gener-

alise well to products that do not have any browsing information.

Also, with feature rich web-data (customer shopping) being easily

available on E-commerce platforms nowadays, focus has shifted

towards using customers’ point of view on SKUs to discover intrin-

sic SKU groupings (see [7] ). While SKUs can be grouped based on

attribute similarity, they can also be grouped with respect to cus-

tomers’ perceptions on SKU groups: such as SKU group comprising

similar brands, similar sizes and shapes, similar colors and patterns

etc. Customer perceptions on SKU groups are well reflected on the

browsing pattern, eg. similar SKUs being co-browsed by the cus-

tomers in the same session. This enables scaling up the approach to

a large number of verticals as no manually labelled data is required.

Additionally, the feature rich information on customers’ point of

view and SKU attributes can be efficiently utilized to discover SKU

grouping for a much larger class of SKUs.

Interpretability, along with adherence to business guardrails, is

crucial to designing business-critical strategies and their actionabil-

ity on the MSKUs. Decision trees were frequently used in previous

works where interpretability was prioritised (see [1, 13] ). How-

ever in these works, only a single modality of information was

considered. Combining two modalities of information while clus-

tering is well recognized problem in semi supervised clustering

[3]. Recently, semi-supervised clustering on image data has been

proposed [12] where users provide pairwise constraints on images

as well as the reasoning via image attributes, and both these pieces

of information were used for clustering. While this approach helps

in incorporating customers’ perception, it is a very manual process,

making it non-scalable and hence not well suited for SKU clustering.

Authors in [6] were able to achieve state of the art performance

on a semi-supervised hierarchical clustering task. They proposed
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using cluster-wise tolerance based pair-wise constraints (must-link

and cannot-link constraints) to supervise the formed clusters. Our

problem could also be framed as an attributed graph clustering

problem where the vertices represent SKUs and co-browse score

defines the edges. In this domain, I-Louvain [5] acheived state-of-

art performance by allowing partition of vertices exploiting both

topological structure of graph and vertex attributes. In essence, the

proposed strategies in [5, 6] are quite comparable with our MSKU

clustering strategy with some straightforward modifications.

We propose, herein, a novel tree-based algorithm denoted as

Dual Modality based Decision Tree Clustering(DMDTC) for clus-

tering SKUs/products into MSKUs by bringing together these two

information modalities. i.e., SKU similarity with respect to their

attributes and customers co-browse data. Node splits are defined

on the product attribute space by optimizing for loss with respect

to co-browse scores. This helps us in creating MSKUs which are

interpretable, customer centric, scalable across verticals and gener-

alisable to new SKUs. More importantly, with the learned attribute

space, we are able to assign new products/SKU’s to their respective

MSKU’s, thus addressing a major problem of cold-start assignment

in E-commerce. We evaluate our framework on different experimen-

tal datasets - two datasets comprising Women Ethnic and Backpack

verticals and a synthetic dataset for validation of our methodology.

We also compare its performance against algorithms described in

[6] and [5] and show that DMDTC is able to achieve better or com-

parable cluster quality scores on real as well as synthetic datasets.

2 METHODOLOGY
Consider 𝑁 SKUs within a vertical denoted by 𝑃1, 𝑃2, . . . , 𝑃𝑁 . For

each of the SKU’s, we have information pertaining to a number of

categorical and continuous attributes. Apart from the SKU attribute

data, we have data of user’s browsing history over different sessions.

We define a user session as the presence of a user in the platform

with a unique IP address who has not visited our platform recently.

The proposed clustering strategy starts with considering optimal

hierarchical splits of SKU sets into subsets based on the continuous

and categorical attribute values. Information on co-browsing pairs

of SKUs within same session is leveraged in supervising the splits.

Details on preprocessing have been provided in the Supporting

Information File (SIF).

2.1 Attribute Information and Cobrowse Score
Let 𝑓 𝑟𝑒𝑞(𝑃𝑖 ) denote the number of times 𝑖th SKU is browsed in

the platform within the fixed time interval of consideration. Also,

denote 𝑓 𝑟𝑒𝑞(𝑃𝑖 , 𝑃 𝑗 ) as the number of times two SKUs 𝑃𝑖 and 𝑃 𝑗
are browsed within a single session. This co-browse information is

used to define a score which is the basis of supervising clustering

splits. The co-browse score for a pair of SKUs is defined as the

likelihood of the pair being viewed in a single user session. Hence

in terms of browsing frequency, we define the co-browse score as :

𝑐𝑜𝑏𝑟𝑜𝑤𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 (𝑃𝑖 , 𝑃 𝑗 ) =
𝑓 𝑟𝑒𝑞(𝑃𝑖 , 𝑃 𝑗 )2

𝑓 𝑟𝑒𝑞(𝑃𝑖 ) ∗ 𝑓 𝑟𝑒𝑞(𝑃 𝑗 )
. (1)

Therefore, SKUs which are similar from customer’s point of view

and hence getting co-browsed, have high co-browse scores. In E-

commerce, many SKUs are infrequently browsed and hence most

pairs of SKUs do not comprise the co-browse data. Typically, only

around 5% of pairs have a co-browse score defined.

2.2 Cluster Similarity
Inter_Cluster_Similarity(ICS) is used to measure similarity between

two sets of SKUs. Denoting |𝑆 | as the number of distinct elements

present in a SKU set, 𝑆 , for any two sets of SKUs 𝑆1 and 𝑆2 the

similarity score is defined as:

𝐼𝐶𝑆 (𝑆1, 𝑆2) =
∑
𝑃1∈𝑆1

∑
𝑃2∈𝑆2 𝑐𝑜𝑏𝑟𝑜𝑤𝑠𝑒_𝑆𝑐𝑜𝑟𝑒 (𝑃1, 𝑃2)

|𝑆1| ∗ |𝑆2| . (2)

Self_Cluster_Similarity(SCS) is used to measure similarity within

the same set of SKUs. For given SKUs set 𝑆 , the score is defined as:

𝑆𝐶𝑆 (𝑆) =
∑
𝑃1∈𝑆

∑
𝑃2∈𝑆−𝑃1 𝑐𝑜𝑏𝑟𝑜𝑤𝑠𝑒_𝑆𝑐𝑜𝑟𝑒 (𝑃1, 𝑃2)

|𝑆 | ∗ |𝑆 − 1| . (3)

2.3 Business Guardrails
In E-commerce, there are scenarios, wherein, a small number of

SKUs are heavily co-browsed with each other but not with any

other SKUs. We define these kind of SKUs as Isolated SKUs. Isolated

SKUs would generally have a very high SCS score and a very low

ICS score (defined in equations 3 and 2). Therefore, implementing

clustering in the absence of any business guardrails would lead to

each Isolated SKU getting assigned to a separate (MSKU) cluster.

This makes MSKUs unusable for business use cases as it is not very

feasible to devise business strategies on a multitude of small MSKUs.

Our approach enables easy incorporation of business guardrails

into the algorithm like minimum number of SKUs within an MSKU,

minimum revenue contribution from each MSKU etc.

2.4 Algorithm
We propose a tree-based clustering approach that splits SKUs into

two subsets based on their attribute values, supervised by the best

split score. If a binary split segregates an SKU set 𝑆 into two subsets

𝑆1 and 𝑆2, the split score of this operation is defined based on the

following equation:

𝑠𝑝𝑙𝑖𝑡_𝑠𝑐𝑜𝑟𝑒 (𝑆1, 𝑆2) = 𝐼𝐶𝑆 (𝑆1, 𝑆2)
𝑆𝐶𝑆 (𝑆1) + 𝑆𝐶𝑆 (𝑆2) . (4)

We recursively split the SKUs as long as we get good enough

splits. A split is considered good if both the subsets satisfy business

guardrails and the obtained best 𝑠𝑝𝑙𝑖𝑡_𝑠𝑐𝑜𝑟𝑒 is less than a user

defined threshold. Alternatively, users can tune the maximum depth

of the tree to limit the number of attributes used for clustering.

Following this approach, we obtain a tree structure with leaf nodes

constituting the final clusters (MSKUs).

The implementations of the proposed strategy contains three

main functions as described in details in Algorithm 1:
(1) In line no. [1, 14] get_splits(m) returns possible splits for

m’th attribute. It should be kept in mind that the possible

splits for categorical and continuous attributes are different

as mentioned in the Preprocessing step. WLOG first M_1

attributes are categorical.

(2) UDC checks whether both the subsets satisfy user defined

constraints. This function can be different for different use

cases. (Used in line 24 )
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Algorithm 1 Proposed MSKU Clustering

1: function get_splits(𝑚, 𝑃 )

2: 𝑠𝑝𝑙𝑖𝑡𝑠 ← []
3: 𝑎𝑡𝑡𝑟_𝑣𝑎𝑙𝑢𝑒𝑠 ← {}
4: for 𝑖 ← 1 to 𝑙𝑒𝑛(𝑃) do
5: 𝑎𝑡𝑡𝑟_𝑣𝑎𝑙𝑢𝑒𝑠

insert← 𝑎𝑡𝑡𝑟_𝑚𝑎𝑝 (𝑃 [𝑖],𝑚)
6: if 𝑚 ≤ 𝑀_1 then
7: 𝑠𝑝𝑙𝑖𝑡𝑠 ← all subsets of 𝑎𝑡𝑡𝑟_𝑣𝑎𝑙𝑢𝑒𝑠

8: for split 𝑠 in 𝑠𝑝𝑙𝑖𝑡𝑠 do
9: if 𝑎𝑡𝑡𝑟_𝑣𝑎𝑙𝑢𝑒𝑠 [0] not in 𝑠 then
10: delete s

11: else
12: sort 𝑎𝑡𝑡𝑟_𝑣𝑎𝑙𝑢𝑒𝑠

13: for 𝑖 ← 1 to 𝑙𝑒𝑛(𝑎𝑡𝑡𝑟_𝑣𝑎𝑙𝑢𝑒𝑠) - 1 do
14: 𝑠𝑝𝑙𝑖𝑡𝑠 [𝑖] ← 𝑎𝑡𝑡𝑟_𝑣𝑎𝑙𝑢𝑒𝑠 [1 : 𝑖]

return 𝑠𝑝𝑙𝑖𝑡𝑠
15: procedure DMDTC(𝑃 ) ⊲

16: 𝑎𝑡𝑡𝑟_𝑠𝑝𝑙𝑖𝑡𝑠 ← []
17: for𝑚 ← 1 to𝑀 do
18: 𝑎𝑡𝑡𝑟_𝑠𝑝𝑙𝑖𝑡𝑠 [𝑚] ← 𝑔𝑒𝑡_𝑠𝑝𝑙𝑖𝑡𝑠 (𝑚, 𝑃)
19: split_scores← {}
20: for𝑚 ← 1 to𝑀 do
21: for split 𝑠 in 𝑎𝑡𝑡𝑟_𝑠𝑝𝑙𝑖𝑡𝑠 [𝑚] do
22: 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1← SKUs whose m’th attribute value in 𝑠

23: 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2← 𝑃 - 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1

24: if 𝑈𝐷𝐶 (𝑠𝑢𝑏𝑡𝑟𝑒𝑒1, 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2) = 𝐹𝑎𝑙𝑠𝑒 then
25: continue

26: 𝑖𝑛𝑡𝑟𝑎_𝑠𝑐𝑜𝑟𝑒 ← 𝑆𝐶𝑆 (𝑠𝑢𝑏𝑡𝑟𝑒𝑒1) +𝑆𝐶𝑆 (𝑠𝑢𝑏𝑡𝑟𝑒𝑒2)
27: 𝑠𝑝𝑙𝑖𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑚, 𝑠] ← 𝐼𝐶𝑆 (𝑠𝑢𝑏𝑡𝑟𝑒𝑒1,𝑠𝑢𝑏𝑡𝑟𝑒𝑒2)

𝑖𝑛𝑡𝑟𝑎_𝑠𝑐𝑜𝑟𝑒

28: if 𝑚𝑖𝑛(𝑠𝑝𝑙𝑖𝑡_𝑠𝑐𝑜𝑟𝑒𝑠) ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
29: 𝑚, 𝑠 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑠𝑝𝑙𝑖𝑡_𝑠𝑐𝑜𝑟𝑒𝑠)
30: 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1← SKUs whose m’th attribute value in 𝑠

31: DMDTC(𝑠𝑢𝑏𝑡𝑟𝑒𝑒1)

32: DMDTC(𝑃 - 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1)

33: else
34: Define P as new cluster

35:

(3) In line no. [15, 35] DMDTC(P) returns clusters from 𝑃

SKUs. Here, we first identify all the possible splits and check

their corresponding split_score. We look for those splits that

satisfy UDC defined in (2) and their split_score is better than

the Threshold. If there exists one such split, we split our

SKUs into two subsets and recursively run the algorithm,

else we assign SKUs to one cluster.

2.5 Cluster Performance Comparison
Since we are combining information from two modalities (attribute

and co-browse), it is fair to compare our algorithmwithmultimodal/semi-

supervised clustering techniques. In the current implementation,

we have benchmarked our algorithm against [5, 6].

In [5] , vertices are defined by SKUs and edges between them

are defined by their co-browse scores. The objects in [6], on the

other hand, are defined by the corresponding attributes and we

define must link contraints between them if their cobrowse score

is higher than a threshold. In our case, for MSKU clustering, the

cannot-link constraint is not defined as in case of [6]. Results are

published for the threshold that yielded best test results. To make

the clusters meaningful and actionable from a business perspective,

we impose a threshold of (minimum) 1% of the total SKUs for each

cluster (MSKU). Due to the presence of isolated SKUs, a direct im-

plementation of the algorithms in [6] failed to satisfy this criterion

on our dataset.

To discourage this from happening in [6] we introduced a size

penalty (𝛼) (denoted by SSAHC1) in the formula to calculate the

distance between two clusters and re-define Eq. (9) in [6]. We re-

define the distance between two clusters as

𝑑 (𝐶𝑖 ,𝐶 𝑗 ) =
{
(𝐴𝐺 (𝐶𝑖 ,𝐶 𝑗 ))2 if 𝐴𝐺 (𝐶𝑖 ,𝐶 𝑗 ) ≥ 0

0 otherwise

, (5)

where𝐴𝑔(𝐶𝑖 ,𝐶 𝑗 ) = | |𝑀 (𝐶𝑖 ) −𝑀 (𝐶 𝑗 ) | | −𝐾 (𝐶𝑖 ;𝐶 𝑗 ) −𝐾 (𝐶 𝑗 ;𝐶𝑖 ) +𝛼 ∗
(𝑛𝐶𝑖 +𝑛𝐶 𝑗 ). The final 𝐿 clusters are denoted by𝐶1,𝐶2 ...𝐶𝐿 and |𝐶𝑖 |

denotes number of points in cluster 𝐶𝑖 . We define the proportion

of points in a given cluster by 𝑛𝐶𝑖 =
|𝐶𝑖 |∑𝐿

𝑘=1
|𝐶𝑘 |

.

Another variation of the clustering strategy (denoted by SSAHC2)

was attempted by initially forming 𝑚(> 𝐿) clusters and subse-

quently merging clusters which did not follow business guardrails

with the nearest clusters (following business guardrails) to obtain 𝐿

final clusters. Maximum value of𝑚 was chosen to be 20. The final

result for [6] (denoted by SSAHC) denotes the maximum clustering

score of the two variations.

2.6 Experimental Datasets
We consider a couple of experimental datasets on two disparate

SKU verticals for our analyses. The first dataset comprises 1055

SKUs in the Women Ethnic vertical and the other one comprises

866 SKUs in the Backpack vertical. Each SKU in the Women Ethnic

dataset has 12 attributes (2 continuous and 10 categorical). The con-

tinuous attributes are price and length of the blouse piece, while the

categorical variables include the fabric, embroidery type etc. of the

respective SKU. Each SKU in the Backpack dataset has 12 attributes

(6 continuous and 6 categorical). The continuous attributes include

price of the SKU, number of compartments present in a backpack

etc. and categorical variables include the brand, type of material

etc. of the backpack. Dataset was split randomly into train and test

with test size 20%.

Since ground truth labels are not present and distance from

cluster centroid cannot be defined for co-browse data, we use

Silhouette Index (SIL) as defined in [17] to validate our cluster

quality where distance between two SKUs 𝑃𝑖 and 𝑃 𝑗 is defined as:

𝑑 (𝑃𝑖 , 𝑃 𝑗 ) = −𝑐𝑜𝑏𝑟𝑜𝑤𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 (𝑃𝑖 , 𝑃 𝑗 ) . Clusters are built using train

dataset comprising product attributes supervised via co-browse

information while test data points are assigned cluster membership

basis their attributes alone (ignoring their co-browse information).

The rationale behind above definition is that new SKUs (eg. newly

onboarded products on the platform) do not have co-browse infor-

mation and the only way to assign clusters membership to them is

via their attributes.
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Table 1: Silhouette index for varying number of clusters(L) for Women Ethnic Dataset.
Women Ethnic Dataset

Algorithm L A+C A L A+C A L A+C A L A+C A

K-Means
∗

5 0.51 0.52 10 0.35 0.33 15 0.25 0.23 20 0.17 0.15

SSAHC 5 0.75 0.55 10 0.55 0.43 15 0.56 0.30 20 0.36 0.30

I-Louvain 5 0.86 0.26 10 0.83 0.16 15 - - 20 - -

DMDTC 5 0.67 0.64 10 0.47 0.49 15 0.41 0.38 20 0.34 0.32

Table 2: Silhouette index for varying number of clusters(L) for Backpack Dataset.
Backpack Dataset

Algorithm L A+C A L A+C A L A+C A L A+C A

K-Means
∗

5 0.46 0.39 10 0.37 0.27 15 0.21 0.19 20 0.15 0.14

SSAHC 5 0.88 0.73 10 0.64 0.67 15 0.58 0.46 20 0.53 0.45

I-Louvain 5 0.73 0.46 10 0.83 0.34 15 0.85 0.20 20 0.87 0.18

DMDTC 5 0.91 0.90 10 0.76 0.80 15 0.69 0.67 20 0.67 0.60
*
For K-Means only A was considered in case of A+C

2.7 Synthetic Dataset
Since Silhouette score quantifies the cluster quality based entirely

on the notion of mean intra-cluster and nearest-cluster distance for

each sample, it conveys no information regarding the ’correctness’

of clustering, which requires knowledge of ground truth. In order

to validate our methodology, we run experiments on a synthetic

dataset with 10 clusters comprising 200 data points each. Each point

could be considered as a product defined by its attributes that are a

mix of continuous and categorical attributes (we consider 10 contin-

uous, 5 categorical and 5 noisy attributes). To make the attributes

informative and distinguishable, we assigned 0 and 1 labels to cate-

gorical attributes with proportion of either label chosen randomly

for each of the attributes (for all clusters). For continuous attributes,

we randomly sampled mean for each of the clusters from a normal

distribution with unit variance. The points within a cluster were

then assigned values sampled from normal distribution with re-

spective cluster’s mean and 0.5 variance. Noisy attributes had zero

means for all the clusters. Further, any two points 𝑃1 and 𝑃2 were

defined to have co-browse scores, based on whether they belong to

same or different clusters, as follows:

𝑐𝑜𝑏𝑟𝑜𝑤𝑠𝑒 (𝑃1, 𝑃2) ∼ N (` = 1, 𝜎2 = 1)∀(𝑃1 ∈ 𝑆𝑖 , 𝑃2 ∈ 𝑆 𝑗 ), 𝑖 = 𝑗

∼ N(` = 0, 𝜎2 = 1)∀(𝑃1 ∈ 𝑆𝑖 , 𝑃2 ∈ 𝑆 𝑗 ), 𝑖 ≠ 𝑗

(6)

Above normal distributions with unit and zero means and unit

variance ensure that we have distributions on cobrowse scores

with higher (lower) average scores for points belonging to same

(different) clusters. Fundamentally, this score could be thought of

as the (scaled) linkage probability between a pair of points with a

higher value, i.e., cobrowse score for points within a cluster. Linkage

dropouts with an upper threshold of 20 % were randomly applied to

each of the clusters to introduce some stochastisity in the dataset.

Since the ground truth in this case is known apriori, i.e. cobrowse

scores, it becomes possible to compute the Adjusted Rand Index

(ARI) metric [16], which captures the similarity between two clus-

terings by considering all pairs of samples and counting pairs that

are assigned to the same or different clusters in the predicted and

true clusterings [8]. For a given set S of n elements and two distinct

clusterings of these elements, namely {𝑋 = 𝑋1, 𝑋2, ......, 𝑋𝑟 } and
{𝑌 = 𝑌1, 𝑌2, ......, 𝑌𝑟 }, the overlapping elements in X and Y could be

described through a contingency table [𝑛𝑖 𝑗 ], with each entry in 𝑛𝑖 𝑗
depicting the number of common objects between 𝑋𝑖 and 𝑌𝑗 and

𝑎𝑖 and 𝑏 𝑗 representing the summation of [𝑛𝑖 𝑗 ] along the rows and

columns of the table, respectively.∑
𝑖 𝑗

(𝑛𝑖 𝑗
2

)
−
[∑

𝑖

(𝑎𝑖
2

) ∑
𝑗

(𝑏 𝑗

2

) ] / (𝑛
2

)
1

2

[∑
𝑖

(𝑎𝑖
2

)
+∑𝑗

(𝑏 𝑗

2

) ]
−
[∑

𝑖

(𝑎𝑖
2

) ∑
𝑗

(𝑏 𝑗

2

) ] / (𝑛
2

) (7)

The index typically ranges from 0 to 1, with index value equal

to 1 when a partition is identical to the intrinsic/true structure.

3 EXPERIMENTAL RESULTS
3.1 Numerical Performance - Experimental

Datasets

Figure 1: DMDTC Clusters for Women Ethnic vertical (with
no. of clusters restricted to 4)

Fig. 1 depicts the MSKUs for all products in the Women Ethnic

vertical. For example, the products in C3 MSKU have ’Price >= 650’

and ’Type = Kanjivaram or Mysore’. Definitions of other clusters

can be derived similarly. The tree-based nature of the algorithm

enables easy interpretation of clusters, for every product can be

assigned to its respective cluster based entirely on its attribute

information (Price, Type, Fabric_care in this case).
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Table 3: ARI for number of clusters(L) = 10 on Synthetic Dataset.
Synthetic Dataset: 5 Noisy Synthetic Dataset: 15 Noisy

Algorithm L A + C A Gen. ARI A + C A Gen. ARI

SSAHC 10 0.58 0.53 0.05 0.1 0.23 0

I-Louvain 10 0.89 0.71 0.18 0.73 0.67 0.06

DMDTC 10 0.81 0.78 0.03 0.81 0.78 0.03

The Silhouette scores for theWomen Ethnic and Backpack datasets

are presented in Table 1 and Table 2 respectively. We denote the

attribute and cobrowse spaces with A and C, respectively. We report

the difference in the Silhouette scores in Train (A+C) and Test (A)

data as an indicator of how well the clustering strategy generalises

to products based only on attributes: 𝐺𝑒𝑛.𝑆𝐼𝐿 = 𝐴𝑏𝑠 (𝑇𝑟𝑎𝑖𝑛𝑆𝐼𝐿 −
𝑇𝑒𝑠𝑡𝑆𝐼𝐿) . Fig. 2(a-b) show the 𝐺𝑒𝑛.𝑆𝐼𝐿 plotted against the number

of clusters. Depending on the business use case, it might be more

useful to have fine grained or coarse grained clusters, thus we have

compared the algorithms across a diverse range of final number of

clusters (𝐿). For I-Louvain the number of clusters cannot be directly

varied from the optimal clusters generated by the algorithm. For

comparison across a diverse range of 𝐿, SKUs from smaller clusters

are merged with the remaining clusters on the basis of minimum

mean attribute distance from the cluster SKUs.

(a)

(b)

Figure 2: Generalization error across varying number of
clusters for (a) Women Ethnic and (b) Backpack verticals

From Tables 1-2, it can be seen that the performance of K-Means

is worst for both the verticals, as only a single information modality

(attribute) is exploited. In case of I-Louvain, for both the verticals,

the generalization error increases with number of clusters while

for DMDTC and SSAHC, the 𝐺𝑒𝑛.𝑆𝐼𝐿 is largely constant. DMDTC,

however, has the lowest 𝐺𝑒𝑛.𝑆𝐼𝐿 in both the cases. For I-Louvain,

the number of clusters cannot be varied directly and hence results

are not generated for all values of 𝐿. For instance, on the Women

Ethnic dataset, the optimal clusters generated with I-Louvain were

always less than 15. Thus, we have not published the results for

𝐿 = 15 and 𝐿 = 20.

For both Women Ethnic and Backpack dataset, the DMDTC

algorithm performs better with respect to the Test SIL index than

both the versions of SSAHC and I-Louvain on all 4 sizes (𝐿) of

final clusters as shown in Table 1 and 2. Lower values of 𝐺𝑒𝑛.𝑆𝐼𝐿

indicates robustness of the algorithm as well as simpler splitting

criteria compared to other algorithms. A higher test SIL (on A space)

across a diverse range of final number of clusters as shown in Fig.

2(a-b) indicates that we are able to create good quality clusters

without compromising on interpretability.

In case of SSAHC, the best results were obtained when the clus-

ter tolerance parameter was non-zero. This, along with inferior

performance of K-means algorithm re-emphasizes the importance

of exploiting multiple information modalities on this clustering task.

The DMTDTC algorithm is able to discard less-relevant attributes

from customers point of view because splitting through those does

not result in a significant gain in split score (unlike SSAHC).

3.2 Numerical Performance - Synthetic Dataset
Table 3 depicts the performance of SSAHC, I-Louvain and DMDTC

algorithms on the synthetic dataset for 𝐿 = 10. Clearly, the perfor-

mance of both DMDTC and I-Louvain is significantly better than

SSAHC while the generalization error is lowest in case of DMDTC

(Table 3). Fig. 3 shows the performance of I-Louvain as the weigh-

tage of the Newman modularity (pairwise linkage) in Eq. (2) [5] is

varied on the synthetic dataset. It can be inferred that the perfor-

mance of I-Louvain is highest when the pairwise linkage weight

is close to one, i.e. most of the learning happens in the cobrowse

space itself.

Fig. 4 depicts the comparison between DMDTC and I-Louvain

as the number of attributes is varied from 5 (20 %) to 20 (100 %). For

each of the runs, the proportion of noisy attributes was maintained

at 25 %. Clearly, the drop in performance (ARI) from (A + C) to A

space is pronounced in case of I-Louvain while for DMDTC, there is

hardly any performance drop even for smaller number of attributes.

Table 3 also depicts that the generalization error in case of DMDTC

is lowest even with more noisy attributes introduced (< 0.05 ARI).

3.3 Discussion
The proposed multimodal framework is a significant advancement

over previous works on two counts. One, it creates interpretable,
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Figure 3: I-Louvain performance against varying weight of
the Pairwise Linkage matrix

Figure 4: Comparison ofDMDTCwith I-Louvain as a function
of the dimensionality of attribute space

robust, scalable and customizable product clusters while ensuring

customer centricity. For instance, the clusters (MSKUs) highlighted

in Section 3.1 convey brand as an important attribute and also the

similarity perception amongst brands from a user’s lens; eg. Safari

and American Tourister in Cluster 1 are similar or substitutable

brands (based on cobrowse). One can also easily customise the

number of MSKUs, vis à vis unit threshold, tree splitting criteria,

stopping criteria etc., depending on the business use case. Secondly

and more importantly, it addresses the problem of cold start in

E-commerce, wherein, new products need to be tagged to relevant

MSKUs entirely based on their attributes.

As can be seen in Fig. 2(a-b), othermultimodal algorithms, namely

SSAHC and I-Louvain have a higher generalization error compared

to DMDTC, on the attribute space. For I-Louvain, while the train

(A+C) score remains high, the generalization on the attribute space

is fairly low. On the other hand, K-Means, when implemented with

a single modality of information (product attributes alone) performs

worst, outlining the significance of cobrowse information in better

exploiting the attribute space and generalizing the approach to

freshly onboarded products. In contrast, DMDTC yields a consis-

tently low generalization error across varying number of clusters

(5-20), implying its robustness.

Experiments run on synthetic data for validation offered similar

insights. For example, in Fig.3, I-Louvain achieves the best ARI

score when the weight of pairwise-linkage (cobrowse) score is very

high. The learning on attribute space, therefore, is limited as can be

inferred from an inferior Gen. ARI value in Table 3 as well. Thus by

identifying important attributes from a large attribute space and

defining clusters on the shortlisted attributes, DMDTC can provide

more tangible and actionable business insights. In fact, for many

business use cases, product clustering output is useful only when

the clusters can be defined based on attributes. Thus it makes sense

to evaluate clustering performance on the attribute space, for it

gives us a better sense of cluster output quality.

We performed an additional experiment on synthetic dataset

to further check the robustness of our frameowrk. The number of

noisy attributes in our dataset was increased from 5 to 15, without

tweaking the continuous or categorical attributes. It could be seen

(Table 3) that while the performance of DMDTC remains unchanged,

that of I-Louvain and SSAHC drops significantly in both (A+C) and

A space. Evidently, this is due to the nature of DMDTC algorithm,

i.e. the irrelevant or noisy attributes are not considered for node

splits and are consequently discarded. SSAHC, on the other hand,

witnesses a maximum drop in performance because it utilizes all

attributes for merging products into respective clusters and is not

able to ignore the noisy or non-informative attributes.

To add to the discussion, since our algorithm groups products

having similar cobrowse patterns into a single MSKU, cannibalizing

products become easily identifiable. The generated MSKUs can also

be utilized to understand and forecast demand patterns for various

customer cohorts, eg. Gender, Geography, Affluence etc. in order

to enable better product selection and user personalization.

4 CONCLUSION
The proposed methodology enables efficient integration of SKU

attributes with products’ co-browse information while ensuring

interpretability, customer-centricity and scalability. The major find-

ings of the study are highlighted below:

(1) The resultant MSKUs are more robust, interpretable, user-

centric and address the cold start problem of product assign-

ment, i.e. based entirely on attribute information.

(2) DMDTC outperforms SSAHC and I-Louvain on the Women

Ethnic and Backpack datasets with significantly better Gen.

SIL scores. On the synthetic dataset as well, the ARI of

DMDTC on the (A+C) space is higher (0.81) than SSAHC

(0.58) and comparable to I-Louvain, while the ARI on A space

(0.78) is highest for DMDTC.

(3) Easily available co-browse and product attribute information

makes the framework scalable across verticals. Further, it

is easy to incorporate business guardrails in DMDTC mak-

ing the resultant MSKUs useful in downstream tasks like

designing pricing and selection strategies.

In a future study, we aim to investigate the relevance of these

MSKUs for various customer cohorts to identify the right granular-

ity of cohort selection and thus enable better user personalization.
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