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ABSTRACT
This work explores the usage of Fourier Transform in conjunc-
tion with Triplet loss applied on image styles, for reduction of the
domain gap between the Source (e.g. Product Images in natural
setting) and Target domain (e.g. Product Images on Ecommerce
store pages) towards solving the Domain Adaptation problem. Most
Unsupervised Domain Adaptation (UDA) algorithms reduce the
domain gap between labelled Source domain and the unlabelled
Target domain by matching their marginal distribution. UDA is of
special interest for several ecommerce applications. An example
of this can be identification of live item image captured by a cus-
tomer. Such identification can help in display of relevant selections
available with the ecommerce stores. UDA algorithm performances
degrade when the domain shift between the Source and Target
domain is substantial. To improve the predictive performance of
the existing single source single target UDA algorithms the pro-
posed method StFT attempts to reduce the domain gap between the
Source and Target domain via low-frequency component swapping
and target style enforcement in the feature space upon training
image via triplet loss. The proposed technique can be added on
top of existing UDA methods. This leads to improvement in their
performance without much increase in computational cost. We
have evaluated the proposed method for Office-31 data set with the
Amazon domain acting as either source or target domain.

CCS CONCEPTS
• Computing methodologies→ Transfer learning; •Mathe-
matics of computing→ Computation of transforms.
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1 INTRODUCTION
In the last decade, computer vision research has been immensely
revolutionized by advances in deep learning. This was kicked off by
the introduction of AlexNet[11], the first deep convolutional neural
network that was introduced to improve the results of ImageNet
competition. A typical supervised deep learning model consumes a
large amount of labelled samples to improve its predictive perfor-
mance. A lot of state of the art deep learning architecture have been
proposed in past decade. An underlying assumption in the working
of most of such methods is existence of a common distribution
between the train and test splits. Hence, the generalization power
of these methods is not thoroughly evaluated as test is done on un-
seen test data having same distribution as the training data used for
these models. When this assumption breaks, there is a significant
reduction in the model performance. In most of the real world appli-
cations, a similar distribution might not exist between the training
data and the inference data. The difference between the distribution
of the training data viz. the Source domain, and the test/inference
data viz. the Target domain, is termed as domain gap or domain
shift. Domain Adaptation algorithms attempt to improve model
performance by reducing this domain shift. Domain Adaptation
problem where labels for target domain samples is not available is
termed as Unsupervised Domain Adaptation (𝑈𝐷𝐴) [26]. In UDA
the target domain features show a covariate shift with respect to
the source domain features, causing the model trained just using
the source domain samples to under performs on target domain.
Under this, the conditional distributions 𝐷𝑠 (𝑦 |𝑥) = 𝐷𝑡 (𝑦′ |𝑥 ′) but
𝐷𝑠 (𝑥)! = 𝐷𝑡 (𝑥 ′) where 𝐷𝑠 , 𝐷𝑡 are the source and target domain
distributions respectively, 𝑥 are the source domain features, 𝑦 are
the source domain labels, 𝑥 ′ are the target domain features while
the 𝑦′ are the target domain labels.

Being able to bridge this domain gap will enable development of
applications that use the accessible source domain labelled samples
for training, and are also able to perform well on the target domain
samples. Such applications will be of special value to ecommerce
industry where it can used to match customer captured live images
of products with those available within the ecommerce store’s
selection. Another example might be live camera based verification
of purchased product item delivered to the customer. Most of the
domain adaptation methods try to reduce the domain gap by trying
to align the marginal distributions[2, 20]. Han Zhao Et. Al[27] have
demonstrated in their work that marginal alignment of the Source
and Target distribution does not always ensure a joint alignment
of distributions 𝐷𝑠 and 𝐷𝑡 . Domain alignment becomes even more
difficult as the domain shift between the source and target domain
increases.

We propose Style loss and Fourier Transformation (StFT), an
approach to close the domain gap between the source and target
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domain by coupling a Fourier transform based augmentation with
an additional style focused triplet loss, applied to existing UDA al-
gorithms. We make an assumption that there are two independent
component to an image - class discriminative features and style
based features. Out of the two, style based features are responsible
for majority of the domain shift that we find in real world data. As
per Fourier Domain Adaptation (FDA)[24], the transfer of target do-
main style to the source domain via Fourier Transformation reduces
the domain gap and improves the performance for segmentation
task. The first step in StFT involves low frequency swapping,
where we apply Fourier transformation as described in FDA[24],
for the classification purposes, in order to bridge the domain gap.
The target domain samples to be used for the Fourier transforma-
tion are randomly selected. The low frequency components of the
target domain images swapped to source domain during Fourier
transformation represents just the smooth components of images.
Hence, it is very possible that not all the style of the target domain
gets transferred to the source domain image. To improve upon
this, we add a style specific triplet loss component to the overall
loss function to be optimized. This forces the features of source
domain to converge towards the feature of target domain, in the
context of encoded style. The Frequency Transformation step can
be visualized in the fig.1.

Figure 1: Frequency Transformation Overview. The first row above
depicts a general UDA setting where domain shift between labelled
source and unlabelled target is substantial. The second row shows
how swapping of low frequency component in the source domain,
with target domain help bridge the domain gap between the two.
This is also demonstrated by the qualitative image below each distri-
bution.

To summarize briefly, the proposed method has following key
components.

• The proposedmethod is essentially a combination of training
sample augmentation and a new loss component, applied to
existing state of the art UDA methods.

• As a first step, we apply computationally cheap Fourier
Transformation based augmentation on source domain sam-
ples. This step swaps the low frequency component of the

source domain training samples with that of the random tar-
get domain samples. This bridges the domain gap between
the source and target domain to some extent.

• To further close the domain gap that exists between source
and target domain, we add the triplet loss [7] to the overall
loss function of UDAmethod under consideration. The triplet
loss works in the feature space and the samples passed to it
are selected in such a way so as to account for the contrast
between the styles of domains.

2 RELATEDWORKS
TheUnsupervisedDomainAdaptation (UDA) techniques bridge
the domain gap through various means like divergence minimiza-
tion, invariant feature learning via adversarial neural network train-
ing. Techniques for minimizing the divergence include Correlation
Alignment (CORAL)[19], Maximum Mean Discrepancy (MMD)[5],
Contrastive Domain Discrepancy (CDD)[10], etc. These methods
target the statistics of the source and the target distribution, in order
to minimize the domain gap between the two. Under adversarial
network based methods[2, 12, 13], we pit two players in a zero
sum game to optimize for domain gap minimization. The strategy
used is similar to training of a vanilla GAN[4]. In RevGrad[2] a
ResNet based feature extractor is used in combination with a do-
main discriminator and label classifier. The discriminator tries to
differentiate between the source domain and target domain sam-
ples while classifier tries to identify correct class of the sample. A
gradient reversal layer is used in the feature layer to obtain domain
invariant features. DRCN[3] method uses reconstruction of image
samples to apply domain adaptation. Through reconstruction, it
tries to identify latent domain representation that can reconstruct
both the target and source domain, along with encoding classifica-
tion information in source domain.

Image augmentation. Another major tool used to tackle do-
main adaptation problem is sample image augmentation. Augmen-
tation techniques like AdaIN[8], norm-VAE[23] learn functions to
transfer style from target to source domain, in order to reduce
the domain gap existing between the two. Such learning based
techniques cost substantially in terms of time and computational
power. Difficulty in the search of ideal hyperparameters to be used
are another source of instability in the training process in such
approaches. GAN based methods like CycleGAN pose substantial
cost in terms of both time and computational power. Contrary to
these, the proposed FDA based augmentation is a computationally
cheap way to reduce the domain gap. The proposed triplet loss
component also poses minimal additional computation cost.

3 PROPOSED METHOD
The proposed method StFT works on top of existing state of the
art UDA methodologies. The proposed method follows 2 steps in
an attempt to close down the domain gap between source and
target domains. The first step involves swapping the low frequency
component of the training source domain samples, with that of
randomly sampled target domain samples. The second step involves
application of an additional triplet loss component to the overall
loss function of the underlying UDA algorithm.
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3.1 Fourier Transformation
Since the low frequency component represents smooth features
of an image, they help enable transfer of some style information
from the target domain to the source domain. This helps bring the
augmented source domain labelled samples closer to the target
domain in the image space. Another purpose served by this Fourier
transformation is to prepare component required for the second
step. It does so by creating Fourier transformed source domain
samples to be used as “anchor” in the triplet loss of second step.

For Fourier transformation, Fast Fourier transforms (FFT) for the
Source domain and Target domain samples for the current batch
are calculated. FFT algorithm efficiently implements the Discrete
Fourier transform (DFT). DFT for two dimensional data is repre-
sented in equation (1) and its inverse representation is in equation
(2) .

F = 𝐹 (𝑝,𝑞) = 1
𝑅𝑆

𝑅−1∑︁
𝑟=0

𝑆−1∑︁
𝑠=0

𝑓 [𝑟, 𝑠 ] exp{−𝑗2𝜋 ( 𝑝𝑟
𝑅

+ 𝑞𝑠

𝑆
) } (1)

F−1 = 𝑓 (𝑟, 𝑠) = 1
𝑃𝑄

𝑃−1∑︁
𝑝=0

𝑄−1∑︁
𝑞=0

𝐹 [𝑝,𝑞 ] exp{ 𝑗2𝜋 ( 𝑝𝑟
𝑃

+ 𝑞𝑠

𝑄
) } (2)

Where 𝑅 and 𝑆 represent the number of rows and columns re-
spectively, in the input 2-d image. 𝑓 [𝑟, 𝑠] represents the pixel value
at 𝑟𝑡ℎ row and 𝑠𝑡ℎ column in the input image. Likewise, the function
𝐹 [𝑝, 𝑞] calculates the frequency value at 𝑝𝑡ℎ row and 𝑞𝑡ℎ column
of the input image. F and F −1 are Fourier and inverse Fourier
transform respectively.

To transfer the style specific information encoded in the low
frequency component of the target domain, the FFT for both Source
and Target domain samples are calculated. The low-frequency com-
ponent of the Source domain samples is replaced with that of the
Target domain samples as shown in Fig. 2(c). The transformed
source image is called as Fourier transformed Source S̃. It ensures
a smaller domain shift between S̃ and Target domain T in im-
age space. Overall, Frequency transformation procedure can be
summarized as follows:

S̃ = F −1 [𝜏{F (S), F (T )}] (3)

Where F and F −1 are Fourier transform and inverse Fourier
transform respectively. Function 𝜏 represents the function to swap
the low frequency component in the first argument, from the second
argument. This is also demonstrated in Fig. 2(a)

3.2 Triplet Loss
In the second step, we apply an additional triplet loss along with
the total overall loss of the underlying UDA method. Triplet loss
is a loss function that compares current input sample, referred as
the anchor, with a sample to be matched, called the positive, and
with a sample to move away from, referred as the negative. The
triplet loss tries to minimize the distance between the anchor and
the positive, while it tries to maximize the distance between the
anchor and the negative. If we are operating in euclidean space,
triplet loss L can be defined as:

L(𝑝, 𝑎, 𝑛) =𝑚𝑎𝑥 ( | |𝐹 (𝑎) − 𝐹 (𝑝) | |2 − ||𝐹 (𝑎) − 𝐹 (𝑛) | |2 + 𝛽, 0) (4)

where 𝑝 is the positive input, 𝑎 is the anchor input and 𝑛 is the
negative input, function 𝐹 is the feature extractor used to generate
embedding for an input image and 𝛽 is the margin to be enforced be-
tween positive sample and the negative sample. In our experiments,
the 𝐹 will be the backbone of a ResNet 50 model.

The purpose of this loss is to add information encoding target
style, to the Fourier transformed source samples. The effect of this
step relies on the assumption that there are only style specific in-
formation and class specific information in any image data sample.
In order to allow only style specific information to flow from target
domain to the augmented source domain and in order to move
augmented source domain style away from the source domain, we
carry out randomization of samples in the original source domain
samples batch, augmented source domain samples batch and to the
unlabelled target domain samples batch. Randomization ensures
that when triplet loss is applied over multiple sample triplets multi-
ple epochs, the class specific information encoded in all three kind
of samples get cancelled out, leaving the comparison only between
the style specific components.

Let 𝜂 be a random shuffling function, 𝐴 be the set of training
samples from Fourier Transformed source domain S̃, acting as
anchor in the loss function. 𝑃 be the set of positive target domain T
and 𝑁 be the set of negative samples from original source domain
S and 𝑏 be the batch size.

P = {𝑝𝑐𝑝11 , 𝑝
𝑐𝑝2
2 , ...., 𝑝

𝑐𝑝𝑏
𝑏

} (5)

N = {𝑛𝑐𝑛11 , 𝑛
𝑐𝑛2
2 , ...., 𝑛

𝑐𝑛𝑏
𝑏

} (6)

𝐴 = {𝑎𝑐𝑎11 , 𝑎
𝑐𝑎2
2 , ..𝑎

𝑐𝑎𝑏
𝑏

} = 𝜂 (F −1 [𝜏{F (N), F (P)}]) (7)

Then the total triplet loss for each batch will become:

J =

𝑏∑︁
𝑖=1

𝐿(𝑃𝑖 , 𝐴𝑖 , 𝑁𝑖 ) (8)

As a result of this additional loss component in the overall loss,
the ResNet generated feature used for classification encodes infor-
mation about the target domain style as well. This results in further
reduction in domain shift and a better UDA performance.

4 DOMAIN ADAPTATION
The Fourier transformation of source S brings the source domain
closer to the target domain. As can be observed in fig1. the Fourier
transformed samples are closer to the target domain, compared to
the source domain, resulting in a reduction in the domain gap. This
transformation only leads to a finite reduction in the domain gap
between the source domain S and target domain T . This transfor-
mation can also lead to development of artifacts in the image space
during the inverse Fourier transformation, causing an imperfect
style transfer. In order to counter this effect and to further supple-
ment Fourier transformation, triplet loss is applied in the feature
space. Triplet loss brings style information encoded in the feature of
the augmented source domain S̃ closer to that of the target domain
T and away from that of the source domain samples S. This also
helps in further eliminating the small differences arising from the
hardware device used to capture images in each domain.
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Figure 2: Architecture of StFT. The architecture is divided into two stages. In Stage 1 the source images are transformed using low frequency
component augmentation by swapping it with that of the target domain image samples. The augmented source domain is closer to the target
domain. The Source S, Transformed Source Ŝ (with labels) and Target T images (unlabelled) are then passed through the underlying Domain
Adaptation network. In stage 2, the randomly shuffled source domain samples (negative), augmented source domain samples (anchor) and the
target domain samples (positive) are passed to the triplet loss function to bring augmented source closer to the target domain, in terms of the
style.

4.1 Algorithm
Algorithm of the proposed approach can be observed in Algorithm
1 with a graphical representation of the same in the fig.2

5 THEORETICAL INSIGHTS
Let H be a hypothesis space having VC dimension as 𝐷 . Let 𝑈𝑆 ,
𝑈𝑇 be the labelled and unlabeled samples of size m each, drawn
from the distributions DS and 𝐷𝑇 respectively. Simplified form of
theorem 2 from [1] can be written as

𝜖𝑇 (ℎ) ≤
1
2
𝐷̂HΔH (U𝑆 ,U𝑇 ) + K (9)

where 𝜖𝑇 (ℎ) is the classification error for Target domain samples
for the given hypothesisℎ. 𝐷̂HΔH (U𝑆 ,U𝑇 ) is the divergence value
between the target and source domains whileK is a constant value.
To obtain an even stricter upper bound, UDA algorithms should
aim for a smaller divergence 𝐷̂HΔH (U𝑆 ,U𝑇 ). Domain adaptation
algorithm that minimizes the domain divergence reduces the Target
error 𝜖𝑇 (ℎ). The method proposed in this work explicitly tries to
minimize the divergence between the domains. It does so by swap-
ping the low frequency component of source domain by that of
target domain samples as well as applying a domain style specific
triplet loss such that 𝐷̂HΔH (U

𝑆
,U𝑇 ) < 𝐷̂HΔH (U𝑆 ,U𝑇 ) where

U
𝑆
is unlabelled transformed source sample. Hence, the proposed

method will have a stricter target classification error upper bound.
Hence, applying domain adaptation algorithm on reduced diver-
gence should further minimize the target classification error value
𝜖𝑇 (ℎ) resulting in improved domain adaptation model performance.

6 EXPERIMENTS
Themodel agnostic nature of the proposedmethodmakes it possible
to use it to improve the performance of any existing method. In
this work, the proposed method has been applied to two popular

methods - Minimum Class Confusion (MCC)[9] and RevGrad using
Office31 dataset. We compare the proposed method with existing
UDA baseline using test accuracies on target domain samples. The
loss values of training and testing of different methods has not been
compared in this work owing to differences in loss functions used.

6.1 Dataset
Office-31: This dataset consists of 3 domains with samples corre-
sponding to 31 classes, in each of the 3 domains. There are 4110
image samples in total. The 3 domains in the dataset are Amazon
(A), DSLR (D) and Webcam (W ). The Amazon dataset can be down-
loaded from amazon.com. It consists of objects corresponding to
the 31 classes, against a white background. The images in DSLR and
Webcam domain have been captured in an office setting. A major
source of domain gap between the DSLR and Webcam domain is
the difference in image resolution. The DSLR domain images have a
higher resolution compared to the Webcam images. There are total
6 possible domain adaptation cases for Office31 dataset. These cases
are 𝐷 → 𝐴,𝑊 → 𝐴, 𝐴 →𝑊 , 𝐴 → 𝐷 , 𝐷 →𝑊 , and𝑊 → 𝐷 . Since
our focus is on ecommerce application of Domain Adaptation, the
cases covered in this work are 𝐷 → 𝐴,𝑊 → 𝐴, 𝐴 →𝑊 , 𝐴 → 𝐷 .

6.2 Setup
Sagemaker instance ml.p3.2xlarge having 1 Tesla V100 has been
used for all the experiments. ResNet 50 has been used as the feature
extractor in all of the experiments. Minibatch gradient descent with
0.9 as the momentum has been used as the optimization algorithm.
The learning rate used has been defined as:

𝜇𝑝 =
𝜇0

(1 + 9𝑝) (10)

𝑝 =
𝑒𝑝𝑜𝑐ℎ

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑒𝑝𝑜𝑐ℎ𝑠
(11)
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Algorithm 1: StFT: Style loss and Fourier Transformation for Domain Gap Reduction
Stage 1: Frequency Transformation

Input: {𝑥𝑠
𝑖
, 𝑦𝑠

𝑖
}𝐵
𝑖=1 ∼ D𝑠 ⊲ Randomly sample a batch of source image

{𝑥𝑡
𝑖
}𝐵
𝑖=1 ∼ D𝑡 ⊲ Randomly sample a batch of Target domain

Find the Fourier transform of source sample batch: F (S) = F (𝑥𝑠
𝑖
)

Find Fourier transform of target sample batch: F (T ) = F (𝑥𝑡
𝑖
)

Swap source low frequency with that of target: 𝑓 {F (S), F (T )} ⊲ Figure 2(a)
Apply inverse Fourier Transform and extract the transformed source: Ŝ = F −1 [𝑓 {F (S), F (T )}] ⊲ Refer Eq. 3
Shuffle the order of transformed source images in S̃
Stage 2: Domain Adaptation

Input: original Source S; Transformed source Ŝ; Unlabelled Target T ; Adaptation Network Parameter 𝑔𝑠 (𝑥 ;𝜃𝑠 , 𝜙𝑠 )
while epoch < 𝐸𝑚𝑎𝑥 do

Triplet Loss J =
∑
𝐿(T , Ŝ,S) ⊲ Refer Eq. 8

Update UDA model network parameters 𝜃𝑠 , 𝜙𝑠 using adaptation loss + Style Specific Triplet loss J
end
Repeat Stage-1 to 2 for all epochs with updated model parameter
Inference Using Trained Model

{𝑥𝑖 }𝐵𝑖=1 ∼ D𝑡 ⊲ Sample a batch of target images for inference

{𝑦𝑖𝑛𝑓 𝑒𝑟
𝑖

}𝐵
𝑖=1 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑔𝑡 (𝑥𝑡𝑖 ;𝜃𝑠 , 𝜙𝑠 )}

𝐵
𝑖=1 ⊲ obtain the target label predicted by the model

where 𝑝 ∈ [0, 1] and 𝜇0 as 0.01.
The square window size for selecting low-frequency component

is 2𝐿∗min(𝑊𝑖𝑑𝑡ℎ, 𝐻𝑒𝑖𝑔ℎ𝑡) and 𝐿 was chosen to be 0.01 for RevGrad
and 0.005 for MCC. The margin value used for the triplet loss was
0. The model’s test accuracy for target domain prediction has been
used for evaluating the proposed approach.

6.3 Results
MCC: As can be observed from the experiments in table 1 the
proposedmethod leads to additional performance in each of the four
cases concerning adaptation from or toA. The overall improvement
in the aggregate accuracy was 1.3%. In Fig. 3 it can be observed that
upon convergence, the differences in performance are maintained
for further iterations as well. In Fig 6 a better alignment between
source and target domain features can be observed in proposed
method compared to the existing. This can be quantified via A
Distance which is 1.67 in case of the proposed method compared
to 1.87 in case of existing method. This helps us to infer a better
domain adaptation taking place between the source and target
domains when the proposed method is used.

RevGrad: As can be observed from the experiments in table 1 the
proposedmethod leads to additional performance in each of the four
cases concerning adaptation from or toA. The overall improvement
in the aggregate accuracy was 1.4%. In Fig. 4 it can be observed that
upon convergence, the differences in performance are maintained
for further iterations as well. In Fig 5 a better alignment between
source and target domain features can be observed in proposed
method compared to the existing. This can be quantified via A
Distance which is 1.23 in case of the proposed method compared
to 1.63 in case of existing method. This helps us to infer that the
proposed method leads to a better domain adaptation between the
source and target domains.
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Figure 3: Accuracy Comparison for𝑊 → 𝐴 for MCC As can be
observed, as the model training converges, the proposed solution
outperforms the underlying UDA algorithm
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Figure 4: Accuracy Comparison for𝑊 → 𝐴 for RevGrad As can be
observed, as the model training converges, the proposed solution
outperforms the underlying UDA algorithm

7 E-COMMERCE APPLICATION
The improvement due to the proposed approach can also have posi-
tive implications for ecommerce application of Domain Adaptation
algorithms. Improvement in image based match between images
captured by customers and selections available with ecommerce
stores can be one of such application (W → A or D→ A) . Such
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Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet50).

Method A→ W A → D D → A W → A Avg

ResNet [6] 68.4 68.9 62.5 60.7 65.1
DDC [22] 75.8 77.5 67.4 64.0 71.1
DAN [14] 83.8 78.4 66.7 62.7 72.9
ADDA [21] 86.2 77.8 69.5 68.9 75.6
JAN [16] 85.4 84.7 68.6 70.0 77.1

MADA [17] 90.0 87.8 70.3 66.4 78.6
GTA [18] 89.5 87.7 72.8 71.4 80.3
CAN [25] 81.5 85.5 65.9 63.4 74.0
iCAN [25] 92.5 90.1 72.1 69.9 84.1
CDAN [15] 93.1 89.8 70.1 68.0 80.2

CDAN+E [15] 94.1 92.9 71.0 69.3 81.8
DSAN [28] 93.6 90.2 73.5 74.8 83.0
MCC [9] 93.1 91.9 75.3 74.9 83.8

MCC+StFT (proposed) 93.6 93.7 77.8 75.4 85.1

Table 2: Accuracy on Office-31

Method 𝐷 → 𝐴𝑊 → 𝐴 𝐴 → 𝐷 𝐴 →𝑊 Avg
ResNet [6] 62.5 60.7 68.9 68.4 65.1
RevGrad [2] 71.5 73.6 84.3 88.9 79.5
RevGrad+StFT (proposed) 73.1 74.3 84.9 91.3 80.9

(a) T-SNE Plot for features
generated by RevGrad for
𝑊 → 𝐴 adaptation. A-Dist
= 1.6318

(b) T-SNE Plot for features
generated by RevGrad with
StFT for𝑊 → 𝐴 adaptation.
A-Dist = 1.2357

Figure 5: Dimensionally Reduced T-SNE plots for RevGrad
Features generated in Experiment and Control. As can be
observed from (a) and (b), features in experiment are more
aligned compared to control

improvement can also form the basis of image based verification
of correct product items being delivered by ecommerce stores to
their customers (A → W or A→ D). Another innovative applica-
tion can be mapping of products to those trending on social media
or those available with local shops. Such maps can form basis of
Advertisement content and product recommendations.

(a) T-SNE Plot for features
generated by MCC for𝑊 →
𝐴 adaptation. A-Dist = 1.8778

(b) T-SNE Plot for features
generated by MCC with StFT
for 𝑊 → 𝐴 adaptation. A-
Dist = 1.6722

Figure 6: Dimensionally Reduced T-SNE plots for MCC Fea-
tures generated in Experiment and Control. As can be ob-
served from (a) and (b), features in experiment are more
aligned compared to control

8 CONCLUSION
In this work the domain gap has been explicitly reduced in image
space using low frequency swapping and in feature space via style
specific triplet loss. We have measured the effectiveness of the pro-
posed method using publicly available Office31 dataset consisting of
samples from 3 domains. Apart from stating the theoretical insights,
we have also experimentally evaluated our proposed approach. The
proposed method yields better or comparable results against the
existing unsupervised domain adaptation baseline methods. StFT is
independent of the underlying UDA algorithm and works both be-
fore as well as during the adaptation steps. It can be easily used with
any existing UDA method to enhance their current performance.
Unlike GAN based style transfer UDA algorithms the proposed
method step is relatively computationally inexpensive and doesn’t
consists of many trainable hyperparameters.
Limitations The Fourier transformation stage consisting of low
frequency component swap in the source domain images can lead to
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loss of class discriminative features in the source domain. Also, the
proposed method doesn’t account for differences in the perspective
of image samples from different domains.
Future Works For the future work, we will investigate the effec-
tiveness of the proposed approach for other tasks such as semantic
segmentation, keypoint recognition and image regression. Further
work can be done on the robustness and scalability of the proposed
method across different cases of domain adaptation such as multi-
source domain adaptation and multi-target domain adaptation.

REFERENCES
[1] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and

Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.
Machine learning 79, 1 (2010), 151–175.

[2] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning. PMLR, 1180–
1189.

[3] Muhammad Ghifary,W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, andWen
Li. 2016. Deep reconstruction-classification networks for unsupervised domain
adaptation. In European Conference on Computer Vision. Springer, 597–613.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014), 2672–2680.

[5] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex
Smola. 2006. A kernel method for the two-sample-problem. Advances in neural
information processing systems 19 (2006), 513–520.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[7] Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In
International workshop on similarity-based pattern recognition. Springer, 84–92.

[8] Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time
with adaptive instance normalization. In Proceedings of the IEEE International
Conference on Computer Vision. 1501–1510.

[9] Ying Jin, Ximei Wang, Mingsheng Long, and Jianmin Wang. 2020. Minimum
Class Confusion for Versatile Domain Adaptation.

[10] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander GHauptmann. 2019. Contrastive
adaptation network for unsupervised domain adaptation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 4893–4902.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Informa-
tion Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Eds.), Vol. 25. Curran Associates, Inc., 1097–1105. https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[12] Jogendra Nath Kundu, Nishank Lakkakula, and R Venkatesh Babu. 2019. Um-
adapt: Unsupervised multi-task adaptation using adversarial cross-task distilla-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
1436–1445.

[13] Jogendra Nath Kundu, Phani Krishna Uppala, Anuj Pahuja, and R Venkatesh
Babu. 2018. Adadepth: Unsupervised content congruent adaptation for depth
estimation. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2656–2665.

[14] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning
transferable features with deep adaptation networks. In International conference
on machine learning. PMLR, 97–105.

[15] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2017.
Conditional adversarial domain adaptation. arXiv preprint arXiv:1705.10667
(2017).

[16] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep
transfer learning with joint adaptation networks. In International conference on
machine learning. PMLR, 2208–2217.

[17] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. 2018. Multi-
adversarial domain adaptation. In Thirty-second AAAI conference on artificial
intelligence.

[18] Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo, and Rama Chellappa.
2018. Generate to adapt: Aligning domains using generative adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
8503–8512.

[19] Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of frustratingly easy
domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 30.

[20] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for deep
domain adaptation. In European conference on computer vision. Springer, 443–450.

[21] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversar-
ial discriminative domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 7167–7176.

[22] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474 (2014).

[23] Qian Wang, Fanlin Meng, and Toby P Breckon. 2020. Data augmentation with
norm-VAE for unsupervised domain adaptation. arXiv preprint arXiv:2012.00848
(2020).

[24] Yanchao Yang and Stefano Soatto. 2020. Fda: Fourier domain adaptation for
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 4085–4095.

[25] Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. 2018. Collaborative and
adversarial network for unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 3801–3809.

[26] Youshan Zhang. 2021. A Survey of Unsupervised Domain Adaptation for Visual
Recognition. CoRR abs/2112.06745 (2021). arXiv:2112.06745 https://arxiv.org/
abs/2112.06745

[27] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. 2019.
On learning invariant representations for domain adaptation. In International
Conference on Machine Learning. PMLR, 7523–7532.

[28] Yongchun Zhu, Fuzhen Zhuang, Jindong Wang, Guolin Ke, Jingwu Chen, Jiang
Bian, Hui Xiong, and Qing He. 2020. Deep Subdomain Adaptation Network for
Image Classification. IEEE Transactions on Neural Networks and Learning Systems
(2020).

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2112.06745
https://arxiv.org/abs/2112.06745
https://arxiv.org/abs/2112.06745

	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Fourier Transformation
	3.2 Triplet Loss

	4 Domain Adaptation
	4.1 Algorithm

	5 Theoretical Insights
	6 Experiments
	6.1 Dataset
	6.2 Setup
	6.3 Results

	7 E-Commerce Application
	8 Conclusion
	References

